No Evidence that MicroRNAs Coevolve with Genes Located in Copy Number Regions.

نویسنده

  • Richard Jovelin
چکیده

MicroRNAs (miRNAs) are a widespread class of regulatory noncoding RNAs with key roles in physiology and development, conferring robustness to noise in regulatory networks. Consistent with this buffering function, it was recently suggested that human miRNAs coevolve with genes in copy number regions (copy number variation [CNV] genes) to reduce dosage imbalance. Here, I compare miRNA regulation between CNV and non-CNV genes in four model organisms. miRNA regulation of CNV genes is elevated in human and fly but reduced in nematode and zebrafish. By analyzing 31 human CNV data sets, careful analysis of human and chimpanzee orthologs, resampling genes within species and comparing structural variant types, I show that the apparent coevolution between CNV genes and miRNAs is due to the strong dependency between 3'-untranslated region length and miRNA target prediction. Deciphering the interplay between CNVs and miRNAs will likely require a deeper understanding of how miRNAs are embedded in regulatory circuits.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

CNVs-microRNAs Interactions Demonstrate Unique Characteristics in the Human Genome. An Interspecies in silico Analysis

MicroRNAs (miRNAs) and copy number variations (CNVs) represent two classes of newly discovered genomic elements that were shown to contribute to genome plasticity and evolution. Recent studies demonstrated that miRNAs and CNVs must have co-evolved and interacted in an attempt to maintain the balance of the dosage sensitive genes and at the same time increase the diversity of dosage non-sensitiv...

متن کامل

Increased number of microRNA target sites in genes encoded in CNV regions. Evidence for an evolutionary genomic interaction.

MicroRNAs (miRNAs) and copy number variations (CNVs) are two newly discovered genetic elements that have revolutionized the field of molecular biology and genetics. By performing in silico whole genome analysis, we demonstrate that both the number of miRNAs that target genes found in CNV regions as well as the number of miRNA-binding sites are significantly higher than those of genes found in n...

متن کامل

Genes with Relevance for Early to Late Progression of Colon Carcinoma Based on Combined Genomic and Transcriptomic Information from the Same Patients

BACKGROUND Genetic and epigenetic alterations in colorectal cancer are numerous. However, it is difficult to judge whether such changes are primary or secondary to the appearance and progression of tumors. Therefore, the aim of the present study was to identify altered DNA regions with significant covariation to transcription alterations along colon cancer progression. METHODS Tumor and norma...

متن کامل

Differentially expressed microRNAs in lung adenocarcinoma invert effects of copy number aberrations of prognostic genes

In many cancers, significantly down- or upregulated genes are found within chromosomal regions with DNA copy number alteration opposite to the expression changes. Generally, this paradox has been overlooked as noise, but can potentially be a consequence of interference of epigenetic regulatory mechanisms, including microRNA-mediated control of mRNA levels. To explore potential associations betw...

متن کامل

MicroRNA-218 Is Deleted and Downregulated in Lung Squamous Cell Carcinoma

MicroRNAs (miRNAs) are a family of small, non-coding RNA species functioning as negative regulators of multiple target genes including tumour suppressor genes and oncogenes. Many miRNA gene loci are located within cancer-associated genomic regions. To identify potential new amplified oncogenic and/or deleted tumour suppressing miRNAs in lung cancer, we inferred miRNA gene dosage from high dimen...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Molecular biology and evolution

دوره 32 7  شماره 

صفحات  -

تاریخ انتشار 2015